Bioelectronics with two-dimensional materials
نویسندگان
چکیده
منابع مشابه
Angle-selective perfect absorption with two-dimensional materials
Two-dimensional (2D) materials have great potential in photonic and optoelectronic devices. However, the relatively weak light absorption in 2D materials hinders their application in practical devices. Here, we propose a general approach to achieve angleselective perfect light absorption in 2D materials. As a demonstration of the concept, we experimentally show giant light absorption by placing...
متن کاملTwo-dimensional crystals-based heterostructures: materials with tailored properties
Graphene is just one example of a large class of two-dimensional crystals. These crystals can either be extracted from layered three-dimensional materials or grown artificially by several different methods. Furthermore, they present physical properties that are unique because of the low dimensionality and their special crystal structure. They have potential for semiconducting behavior, magnetis...
متن کاملAn atlas of two-dimensional materials.
The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electro...
متن کاملTwinned growth behaviour of two-dimensional materials
Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% o...
متن کاملTwo-dimensional packing in prolate granular materials.
We investigate the two-dimensional packing of extremely prolate (aspect ratio alpha=L/D>10) granular materials, comparing experiments with Monte Carlo simulations. The average packing fraction of particles with aspect ratio alpha=12 is 0.68+/-0.03. We quantify the orientational correlation of particles and find a correlation length of two particle lengths. The functional form of the orientation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microelectronic Engineering
سال: 2016
ISSN: 0167-9317
DOI: 10.1016/j.mee.2016.04.003